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Objective
To develop a prognostic model that determines patient sur-
vival outcomes after orthotopic liver transplantation (OLT) us-
ing readily available pretransplant variables.

Summary Background Data
The current liver organ allocation system strongly favors organ
distribution to critically ill recipients who exhibit poor survival
outcomes following OLT. A severely limited organ resource,
increasing waiting list deaths, and rising numbers of critically ill
recipients mandate an organ allocation system that balances
disease severity with survival outcomes. Such goals can be
realized only through the development of prognostic models
that predict survival following OLT.

Methods
Variables that may affect patient survival following OLT were
analyzed in hepatitis C (HCV) recipients at the authors’ center,
since HCV is the most common indication for OLT. The re-
sulting patient survival model was examined and refined in
HCV and non-HCV patients in the United Network for Organ
Sharing (UNOS) database. Kaplan-Meier methods, univariate
comparisons, and multivariate Cox proportional hazard re-
gression were employed for analyses.

Results
Variables identified by multivariate analysis as independent
predictors for patient survival following primary transplantation

of adult HCV recipients in the last 10 years at the authors’
center were entered into a prognostic survival model to pre-
dict patient survival. Accordingly, mortality was predicted by
0.0293 (recipient age) � 1.085 (log10 recipient creatinine) �
0.289 (donor female gender) � 0.675 urgent UNOS - 1.612
(log10 recipient creatinine times urgent UNOS). The above
variables, in addition to donor age, total bilirubin, prothrombin
time (PT), retransplantation, and warm and cold ischemia
times, were applied to the UNOS database. Of the 46,942
patients transplanted over the last 10 years, 25,772 patients
had complete data sets. An eight-factor model that accurately
predicted survival was derived. Accordingly, the mortality in-
dex posttransplantation � 0.0084 donor age � 0.019 recipi-
ent age � 0.816 log creatinine � 0.0044 warm ischemia (in
minutes) � 0.659 (if second transplant) � 0.10 log bilirubin �
0.0087 PT � 0.01 cold ischemia (in hours). Thus, this model
is applicable to first or second liver transplants. Patient sur-
vival rates based on model-predicted risk scores for death
and observed posttransplant survival rates were similar. Addi-
tionally, the model accurately predicted survival outcomes for
HCV and non-HCV patients.

Conclusions
Posttransplant patient survival can be accurately predicted
based on eight straightforward factors. The balanced applica-
tion of a model for liver transplant survival estimate, in addition
to disease severity, as estimated by the model for end-stage
liver disease, would markedly improve survival outcomes and
maximize patients’ benefits following OLT.
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Since 1987, the rate of new registration to the United
Network for Organ Sharing (UNOS) waiting list has far
exceeded the growth of cadaveric liver donors. With less
than 5,000 cadaveric livers available annually, close to
19,000 patients currently await liver transplantation.1 De-
spite adopting the minimal listing criteria2 and expanding
the definitions of acceptable grafts, the current disparity
between supply and demand has both exponentially in-
creased median waiting times and linearly increased waiting
list deaths, which reached 1,600 in 2000. The growing
scarcity of donor organs compared to potential recipients
awaiting liver transplantation has additionally increased the
numbers of patients undergoing transplantation as urgent-
status recipients.3 However, survival benefits of transplan-
tation in critically ill recipients are poor when compared to
nonurgent patients.4–8

Two guiding principles of organ distribution for liver
transplantation have been advocated: efficiency of organ use
and the urgency of need.8 The first implies transplantation
into low-risk recipients, where the best results are achieved,
while the second favors organ diversion to high-risk patient
cohorts. If sufficient liver organ allografts were available for
transplantation, the urgency of need principle would no
doubt provide the best benefit to transplant candidates.
However, the aforementioned scarcity of cadaveric organs
and mounting deaths on waiting lists and failure of one in
five adult primary liver grafts within the first year after
transplantation9 argue that optimizing outcome by efficient
organ use may provide the best benefit to our patients.

The current organ allocation system is strongly biased
toward the severity of illness and favors organ distribution to
urgent recipients.2–3,10,11 Additionally, the recent adoption
of the Model for End-Stage Liver Disease (MELD),12,13 which
is a strong predictor of death for patients on waiting lists but
not for survival after transplantation, as the basis for national
organ allocation may increase the percentage of urgent patients
receiving cadaveric transplantation and further minimize the
survival outcomes of a limited organ resource. In contrast, an
organ allocation system that balances disease severity with
expected outcomes would maximize patients’ survival benefits
from transplantation. Such goals can be realized only with
better understanding of the factors that influence patient and
graft survival and the development of prognostic models for
OLT outcomes.

The development of a model that predicts patient survival
following liver transplantation has therefore become a cru-
cial concern of the liver transplant community. We4–7,14,15

and others16–27 have critically examined the factors associ-
ated with transplantation outcomes in different patient pop-
ulations. Our previous study5 attempted to define the vari-
ables that affected patient survival in hepatitis C virus
(HCV) transplant recipients at our center. Such factors were
applied to a large cohort of patients obtained from the
UNOS database to develop a model that predicts patient
survival after liver transplantation.

METHODS

Patients

From January 1990 to December 2000, 510 adult patients
underwent orthotopic liver transplantation (OLT) for end-
stage liver disease (ESLD) secondary to HCV at our center.
Of the 510 patients, 80 (15.7%) had graft failure that re-
quired retransplantation and 129 died during the follow-up
period. Median follow-up was 30 (0–130) months.

The UNOS dataset contained a total of 46,942 patients
who were transplanted between 1990 and 2000 for all
diagnoses of ESLD. Only 25,772 patients over 18 years of
age, with complete datasets, were included in the analysis.
The median follow-up time was 36 months (�1–145)
months, with a 27.5% overall mortality.

Candidates for OLT were categorized as urgent or non-
urgent recipients according to their medical condition be-
fore transplantation, as defined by the UNOS categories.
From 1990 to 1994 urgent recipients included status 4
patients, while nonurgent patients included status 3, 2, and
1. After November 1994, status designation was modified
by UNOS on two occasions. Urgent recipients included
either status 1 or 2A and nonurgent recipients included
status 2, 2B, 3, or 4, according to the designated UNOS
criteria at the time of transplantation.

Survival Model for HCV Patients

The initial survival model in HCV-positive adult primary
transplant recipients considered 19 donor, recipient, and
operative variables that may have an impact on patient
survival. Donor variables included age, sodium level, days
of hospitalization before procurement, history of cardiac
arrest, number of donor pressors, donor HCV status, and
donor gender. The 10 recipient variables examined were
age, UNOS status before transplantation, preoperative total
bilirubin, AST, ALT, prothrombin time, serum creatinine,
HCV RNA, presence or absence of hepatocellular carci-
noma (HCC), and HCV recurrence. In addition, two oper-
ative variables that included cold and warm ischemia times
were analyzed. According to this model, the estimated
relative mortality risk � exp (mortality index), where the
mortality index is given by: 0.0293 (recipient age) �
1.085 (log10 recipient creatinine) � 0.289 (donor female
gender) � 0.675 urgent UNOS - 1.612 (log10 recipient
creatinine times urgent UNOS). Factors that were iden-
tified by multivariate analysis to have an impact on
survival in HCV patients, in addition to other variables,
were tested in the UNOS dataset.

Statistical Analysis

Analyses were performed as previously described.5 Sur-
vival curves were computed using Kaplan-Meier methods
and compared using log-rank tests. Medians were compared
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via the log-rank test or the Wilcoxon test when data were
not censored. Proportions were compared using the chi-
square test. The log-rank test for trend was used when
comparing survival curves across ordered categories. For
univariate screening purposes, continuous potential predic-
tors of patient or graft survival such as (log) creatinine were
dichotomized at their overall median to form two groups of
roughly equal size.

All variables found univariately significant at P � .20 or
those thought to be important on logical and/or biomedical
grounds were entered into a backward stepdown Cox pro-
portional hazard regression analysis using a liberal P � .10
criterion for interaction variable retention. Variables with
many missing values were not included. All possible two-
way interactions among variables were also first considered
in this Cox backward stepdown procedure. Highly skewed
variables were transformed to the log scale where their
distribution was more symmetric. The c-statistic (concor-
dance) was used to assess the multivariate model perfor-
mance. All analyses were carried out using the SAS system
(SAS Institute Inc., Cary, NC).

RESULTS

Predictors of Survival in HCV Patients at
UCLA

Our previous univariate and multivariate analyses of
adult patients who underwent primary transplantation for
HCV over the last 10 years considered 19 donor, recipient,
and operative variables that may have an impact on patient
survival. Univariate comparison followed by multivariate
Cox proportional hazard regression analysis indicated that
recipient age, UNOS status, donor gender, and log creati-
nine were simultaneous significant predictors that predicted
patient survival following primary transplantation for HCV
at our center. Although this survival model was developed
in HCV patients, HCV recurrence did not appear to affect
patient survival (P � .879). We therefore applied such
factors to the UNOS database that included patients with all
indications for transplantation to verify their ability to pre-
dict survival of HCV and non-HCV recipients.

Model Development Based on UNOS Data

The summary statistics of HCV patients at UCLA, from
which the previous model was derived, and the UNOS
patient population, on which the new model is based, are
shown in Table 1. Comparison of the two datasets demon-
strated a higher percentage of urgent-status patients in the
UNOS data. UCLA patients exhibited lower recipient bili-
rubin and warm and cold ischemia times compared to
UNOS data. The two datasets were similar in total deaths,
serum creatinine, AST, and ALT. The retransplantation rate
was 15.7% in the UCLA dataset and 12% in the UNOS
dataset. Variables found to affect survival in HCV trans-

planted recipients at UCLA were evaluated in the UNOS
dataset. Because of the differences in the two patient pop-
ulations, other variables that were thought to be clinically
relevant or were previously shown to affect patient survival
were included in the analysis. These additional variables
included donor age, recipient total bilirubin, prothrombin
time (PT) of recipient, warm and cold ischemia times, and
history of previous transplant. Multivariate revaluation of
the variables in the UCLA model for HCV patients, in
addition to all the above-mentioned factors in 25,772 pa-
tients obtained from the UNOS database, resulted in an
eight-factor model shown in Table 2. Recipient (log) ALT
was not considered, since (log) AST was found to be a good
proxy for (log) ALT (ALT-AST Spearman correlation �
0.81). In this revised model, donor gender, recipient gender,
log AST, and urgent UNOS status ceased to be statistically
significant after accounting for recipient age, donor age,
recipient (log) creatinine, recipient (log) bilirubin, PT, pre-
vious transplant, and warm and cold ischemia times, which
were all associated with increased risk of death. Addition-
ally, HCV positivity did not appear to impact patient sur-
vival (P � .221).

Table 2 demonstrates the relative risk (hazard) of death
with the corresponding 95% confidence bounds for each
factor. Thus, any increase in the latter eight factors was
associated with increased mortality. Accordingly, a year
increase in recipient age was associated with a 1.9% in-
crease in the risk of dying, while a previous transplant
carried 1.93 times the risk of death when compared to no
previous transplants. Based on this model, the mortality

Table 1. COMPARATIVE
CHARACTERISTICS FOR MULTIVARIATE

DATASETS

Variable
UCLA

(n � 510)
UNOS

(n � 25,772)

Donor factors
Age (years) 36 33
Female gender 32.7% 38.3%

Recipient factors
Age (years) 52 49
Total bilirubin (mg/dL) 2.5 3.5
AST (U/L) 81.5 82
ALT (U/L) 54.5 57
Serum creatinine (mg/dL) 1.0 1.0
Prothrombin time 14 15
Urgent UNOS status 14.7% 21.0%

Operative factors
Warm ischemia (min) 45 51
Cold ischemia (hours) 7.6 9.0

Retransplantations 15.7% 12%
Median follow-up (months) 30 36.5
Total deaths 26.1% 27.5%

UCLA, University of California Los Angeles; UNOS, United Network for Organ
Sharing; AST, aspartate transaminase; ALT, alanine transaminase.
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score is given by: 0.0084 donor age � 0.019 recipient age �
0.816 log creatinine � 0.0044 warm ischemia (in minutes)
� 0.659 (if second transplant) � 0.10 log bilirubin �
0.0087 PT � 0.01 cold ischemia (in hours).

The relative risk of mortality in this model is given by
exp (mortality score minus mean mortality score) � exp
(mortality score minus 1.90), where 1.90 is the mean overall
risk score.

Risk Scores and Model Validation

Mortality risk scores were calculated for individual pa-
tients based on the current model and used to stratify trans-
plant recipients into five risk groups. The risk score cutoff
values dividing the patients were chosen so that each quin-
tile would contain a roughly equal number of patients. As
shown in Table 3, the mean mortality score exhibited a
sequential increase from the first patient quintile, with a
mean risk score of 1.33, to 2.59 in the fifth quintile. The
model’s ability to stratify the patients by risk scores was
validated by the observed relative risk of death, which
sequentially increased from 1.0 in the first quintile to 3.89 in
the fifth quintile. Additionally, the model-predicted relative
risk of death was identical to the observed relative risk of
death throughout all quintiles.

The overall survival of patients from the UNOS database
is shown in Figure 1A. Kaplan-Meier survival analysis
demonstrated 86%, 83%, and 77% patient survival rates at
6 months and 1 and 5 years, respectively. Actuarial patient
survival estimates based on mortality score quintiles are
shown in Figure 1B. The mortality score accurately deter-
mined patient survival, with the worst survival observed
with the highest risk scores. The best survival estimates
were achieved by the patients in the first quintile and
reached 94%, 92%, and 83% at 6 months and 1 and 5 years,
respectively. In contrast, patients with the highest risk
scores, in the fifth quintile, exhibited the lowest patient
survival rates: 71%, 67%, and 53% at 6 months and 1 and
5 years, respectively.

Actual Kaplan-Meier and model-predicted survival es-
timates for risk scores quintiles of the entire UNOS
population of 25,772 patients are shown in Figure 2.
Observed survival rates were identical to model-
predicted estimates for the second and fourth quintiles, as
well as for the first, third, and fifth quintiles. In addition
to survival estimates, the model was also validated using
the c-statistic. The value of the c-statistic was 0.69, 0.68,
and 0.67 at 3 months, 6 months, and 1 year after trans-
plantation, respectively.

Table 2. PROPORTIONAL HAZARD (COX) MODEL FOR PATIENT MORTALITY

Factor Unit Relative Risk 95% Confidence Bounds P Value

Donor age per year increase 1.008 1.007–1.010 �.001
Recipient age per year increase 1.019 1.017–1.021 �.001
Log creatinine per log unit 2.263 2.068–2.477 �.001
Log total bilirubin per log unit 1.105 1.050–1.163 �.001
Prothrombin time per unit 1.009 1.005–1.013 �.001
Warm ischemia time per minute 1.004 1.004–1.005 �.001
Cold ischemia time per hour 1.010 1.005–1.014 �.001
Previous transplant yes/no 1.993 1.813–2.062 �.001
Donor gender yes/no 1.02 0.97–1.07 .48
Recipient gender yes/no 0.946 0.92–1.01 .134
Urgent UNOS status yes/no 1.06 0.96–1.001 .242
Recipient AST per unit 1.0 0.999–1.001 .110
HCV positive yes/no 1.23 0.88–1.71 .221

UNOS, United Network for Organ Sharing; AST, aspartate transaminase; HCV, hepatitis C virus.

Table 3. MORTALITY SCORE AND RELATIVE MORTALITY RISK QUINTILES

Quintile
Number of

Patients
Mortality Score

Range
Mortality Score

Mean
Observed Relative

Risk
Model Relative

Risk

1 5,153 0.15–1.53 1.33 1.0 1.0
2 5,154 1.53–1.75 1.64 1.38 1.37
3 5,155 1.75–1.95 1.85 1.66 1.69
4 5,155 1.95–2.24 2.08 2.23 2.14
5 5,155 2.24–4.00 2.59 3.89 3.52
Total 25,772
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Survival of HCV and Non-HCV Recipients

To determine whether the model accurately predicted the
risk of death in HCV patients, the model-predicted relative
risk of death was compared between HCV-positive and
non-HCV recipients in the UNOS dataset for each variable
included in the model. As shown in Table 4, only the donor
age variable exhibited a difference between HCV and non-

HCV recipients. All other variables imposed a similar rel-
ative risk of death to HCV or non-HCV patients. Addition-
ally, Kaplan-Meier survival estimates demonstrated that the
model-predicted survival estimates were identical to ob-
served actuarial survival rates both in HCV-positive and
non-HCV recipients in the UNOS dataset (Fig. 3). Further,
as shown in Figure 4, the model accurately predicted sur-
vival rates of HCV recipients in UCLA patients.

DISCUSSION

The present study represents our continuous efforts to
determine recipient outcomes following liver transplanta-
tion. We have defined a mathematical model that accurately
estimates patient survival based on readily available preop-
erative factors. These include recipient age, donor age,
recipient creatinine, recipient total bilirubin, PT, retrans-
plantation, and warm and cold ischemia times. The mean
warm ischemia time for the surgical team should be a
well-known value, and the expected cold ischemia time
could be easily calculated before transplantation. The ap-
plication of this model should accurately determine the
expected survival rates for patients undergoing first or sec-
ond transplantation.

We have previously reported the factors that influenced
patient and graft survival in transplantation of HCV recip-
ients at our center.5 Univariate analysis of 19 donor, recip-
ient, and operative factors demonstrated that increases in the
age of the recipient (�52 years) and preoperative serum
creatinine (�1 mg/dL) had an adverse impact on patient
survival. By multivariate analysis, factors that simulta-
neously predicted patient survival included UNOS status,
donor female gender, recipient age, and serum creatinine.
This study attempted to validate such factors in a large
cohort of patients derived from the UNOS database. Be-
cause of the variation between the UCLA cohort and the
broad-based UNOS population, we elected to evaluate ad-
ditional factors to our analysis based on the previously
reported significance of such factors7,14,15,17–19,22,26 in an
attempt to obtain a universal model that predicts survival of
all liver transplants.

This strategy outlined the inherent differences between
single-center and national datasets. While some factors were
significant in both databases, the effect of others may not be
immediately apparent in relatively small datasets where
surgical practices are homogeneous. For example, warm
and cold ischemia times, not significant in our original
study, exhibited vital importance in the final model based on
the UNOS data. Additionally, the UNOS status of the re-
cipient, although critical to the UCLA cohort, ceased to be
significant when applied to the UNOS population, where
other, more objective parameters for the condition of the
patient were used. However, the final UNOS-derived model
was validated in the smaller UCLA cohort. Thus, single-
center experiences are crucial to the validation of any model

Figure 1. Actual Kaplan-Meier patient survival estimates of patients in
UNOS dataset. (A) Overall survival estimate. (B) Actual patient survival
estimates following recipient stratification into quintiles based on mod-
el-predicted mortality risk scores.

Figure 2. Observed (broken line) and model-predicted (nonbroken
lines) survival estimates of liver transplant recipients by mortality risk
quintiles. (A) Second and fourth quintiles. (B) First, third, and fifth
quintiles.
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to confirm its applicability to a wide range of surgical
practices.

Two methods were used in this study to validate the cur-
rent eight-factor model.12,14,24 The first divided the UNOS
patient population into five quintiles based on the model-
predicted risk scores. Such mortality scores accurately de-
termined patient survival rates. The best survival was seen
in patients in the first quintile, with the lowest risk scores.
As predicted, survival rates gradually decreased as the mor-
tality scores increased, with the lowest survival achieved in
patients with highest risk scores. Further, the model-pre-
dicted survival was identical to the observed actual Kaplan-
Meier survival estimates for the entire UNOS population
and subpopulations that included UNOS non-HCV recipi-
ents, UNOS HCV recipients, and UCLA HCV recipients.
The second methodology for model validation estimated the
c-statistic, which may be used to assess a multivariate model
with a binary outcome. The c-statistic for this model was
estimated at 0.69 and 0.67 at 3 and 12 months, respectively.

The MELD is generally believed to exhibit a high c-statistic
of 0.8 to 0.87 and 0.78 to 0.87 at 3 months and 1 year,
respectively.12 However, these high c-statistic estimates
were achieved only on small sample sizes of 282 to 491
patients. When the MELD was applied to a larger sample
size of 1,179, the c-statistic dropped to 0.78 and 0.73 at 3
months and 1 year, respectively. Thus, with a much larger
patient population, the c-statistic of the MELD may decline
even further. We therefore believe that the c-statistic of 0.69
achieved by this model in the heterogeneous UNOS popu-
lation of more than 25,000 patients provides an extremely
useful validated model that accurately predicts patient sur-
vival after transplantation.

The variables identified by our model to affect patient
survival are quite similar to those identified by other au-
thors.16–27 The association of retransplantation with poor
survival outcomes has been well defined by many investi-
gators,17,19,22,23 as well as by our group.7,14 Recipient serum
creatinine was correlated with posttransplant survival, early
postoperative sepsis, and hospital death.15,16,22 Preoperative
recipient physiology, reflected in our model by recipient
age, creatinine, PT, and bilirubin, has been well established
as an independent risk of death.15,17,21,22,26 In addition to
recipient factors, our model also includes an assessment of
the donor organ, as indicated by donor age, which has been
clearly demonstrated to be a primary determinant of graft
function.20,27 Perioperative events that influence patient sur-

Figure 3. Observed and model-predicted survival estimates of UNOS
patient cohorts. (A) HCV-positive patients. (B) Non-HCV patients.

Figure 4. Model-predicted and actual patient survival rates based on
HCV-positive patients transplanted at UCLA.

Table 4. COX MODEL COMPARISON FOR PATIENT MORTALITY

Factor Unit

Model Relative Risk

P Value
HCV positive
(n � 5,704)

Non-HCV
(n � 20,068)

Donor age per year increase 1.013 1.007 .001
Recipient age per year increase 1.020 1.019 .724
Log creatinine per log unit 2.132 2.290 .570
Log total bilirubin per log unit 1.209 1.094 .183
Prothrombin time per unit 1.008 1.009 .818
Warm ischemia time per minute 1.004 1.005 .527
Cold ischemia time per hour 1.010 1.010 .778
Previous transplant yes/no 2.158 1.887 .136

HCV, hepatitis C virus.
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vival are reflected in the model by warm and cold ischemia
times. The mean operative warm ischemia time for the
surgical team and the anticipated cold ischemia time are
variables that can be predicted before surgery and were
therefore entered in our model. The deleterious effects of
prolonged warm or cold ischemia times on the outcome of
transplantation are well established.20,27

An important aspect of this model is that it is applicable
to both HCV and non-HCV patients. This was validated by
demonstrating identical model-predicted survival estimates
to actuarial HCV-positive and non-HCV-positive recipients
in the UNOS database. Additionally, this model was appli-
cable to HCV-positive patients at UCLA. Since ESLD
caused by HCV is currently the major indication for liver
transplantation, it is crucial for any prognostic model to
predict outcomes in such patient cohorts. Interestingly, a
prognostic model for morbidity outcomes in patients with
cholestatic liver disease included recipient age, serum cre-
atinine, UNOS status, and Child class.26 Such factors are
extremely similar to those identified in our model. Although
we did not consider Child class, our model includes serum
creatinine, PT, and total bilirubin, which have been shown
to be superior to Child class in predicting mortality of
patients with ESLD by the MELD model. Thus, the ability
of the current model to predict survival of non-HCV as well
as HCV patients, as well as its similarity to other models
used for non-HCV cohorts, validates our approach in de-
veloping universal prognostic models that accurately predict
short-term OLT outcomes, regardless of the etiology of
ESLD.

The currently presented model for liver transplant sur-
vival (MLTS) is in marked contrast to the MELD scoring
system that has been recently adopted for organ allocation.
While MLTS is an indicator for patient survival after trans-
plantation, MELD is a predictor of mortality for patients
with ESLD. Organ distribution based on MELD scores
would therefore increase the rate of transplantation in urgent
high-risk recipients. Unfortunately, such patients exhibit
poor survival outcomes when compared to nonurgent low-
risk patients, thereby reducing the survival benefits that
could be afforded by liver transplantation. The current era of
severe organ shortage and mounting deaths on the waiting
list argue for optimizing outcome by transplantation of
nonurgent low-risk patients. Thus, a balanced organ alloca-
tion system that considers both disease severity as assessed
by MELD and expected survival as assessed by MLTS
would maximize the patients’ survival benefits following
liver transplantation.

In summary, we have developed a preoperative prognos-
tic model that accurately predicts survival after liver trans-
plantation. This model is equally applicable to first or sec-
ond transplants and appears to predict survival accurately
regardless of the cause of underlying liver disease. Use of
such survival models in clinical decision making and organ
allocation may maximize recipients’ benefits from a limited
donor organ pool.
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DISCUSSION

DR. JOHN J. FUNG (Pittsburgh, PA): The liver transplant group at UCLA
is to be commended for their continuing efforts in assessing utility mea-
sures for liver transplantation. From their reports on cost analysis in liver
transplantation to studying the utility of retransplantation, this study on
predictive modeling for liver transplant outcomes is a natural extension and
adds to our appreciation of the complex factors that determine survival
after liver transplantation.

The issue, as I see it, is not so much the concern that the current
allocation system favors sicker patients and that this will lead to poorer
outcomes. This is a given; it has been demonstrated by other models and
in real life. However, if, as suggested in their manuscript, we should be
“optimizing outcomes by efficient organ use,” we should only transplant
children, 30-year-old PSC and 40-year-old PBC patients livers from teen-
age donors at centers that do more than 35 liver transplants a year. We
would turn down patients with HCV, patients with liver cancer, patients in
fulminant hepatic failure, and never retransplant anyone. But that is not
reality; this is not what the liver transplant procedure was developed for.

In my mind, the strength of this study is that it points out, in a
mathematical representation, the balance between donor factors and recip-
ient factors that determine success or failure, something that liver trans-
plant surgeons have implicitly known for years. The current policy of
transplanting marginal-quality organs into the sickest patient is a formula
for disaster. In the era of increasing marginal donors, such as the older
donor, the unstable donor, the donor with a fatty liver, we must strive to
find scenarios where they can be used with the least negative impact.

So the first question: Do the authors believe their work supports this
concept that higher-risk donors should be transplanted into lower-risk
recipients, and vice versa, such that the objective would be to strike a
balanced risk for everyone who is undergoing liver transplantation?

As one can see from the elements of this formula, the prediction of
outcome is not individual-oriented but rather based on population out-
comes. The model looks at primarily physiologic determinants, those that
get the patient through surgery, but do not necessarily define long-term
survival. For example, a 40-year-old HCV candidate with bilobar HCC
with compensated cirrhosis would not be expected to have better survival
than a 60-year-old woman with significant liver dysfunction from PBC.
So the second question: Do the authors believe that this model can be used
at a level to discern whether an individual patient should be transplanted
or not?

It is obvious that this task is in a state of continuing refinement, as
evidenced by the differences in the various weights and factors mentioned
in the abstract submitted last fall and the equation shown today. Never-
theless, the authors recognize that the utilization of a larger database will
only improve the accuracy of their model. However, I believe that this
introduces center-specific variables that are not adequately addressed in
this model, especially if it is to be used for allocation at a national level. For
instance, warm ischemia time is more a reflection of center experience than
an element that can be predicted prior to transplantation at an individual
basis.

Lastly, the donor shortage has led to not only utilization of marginal
donors, but also the use of living donors. In the current equation, cold

ischemia times are given significant weight. Since this is a minimal factor
in LRD liver transplant (i.e., CIT are �1 hour), do the authors suggest that
this will allow us to transplant patients with more advanced liver disease?

PRESENTER DR. RAFIK M. GHOBRIAL (Los Angeles, CA): Thank you, Dr.
Fung, for such insightful remarks. I deeply appreciate your comments,
especially when much of the pioneering work on predictors of transplan-
tation outcomes originated from the University of Pittsburgh. As you
stated, this is a very complex issue, but we do live in very complex times
where there aren’t enough organs for transplantation. With 5,000 livers for
19,000 patients waiting, there isn’t any easy answer to all those questions.

Regarding your first question, the model supports that high-risk donors
should be transplanted into lower-risk recipients and vice versa? As you
mentioned, this may optimize the outcome, because high-risk recipients
often need better organs and vice versa. However, in practicality when we
get a patient from home, it is very difficult to offer him or her a high-risk
graft. I think this model provides an objective analysis to this dilemma. If
a marginal liver is offered, we can assess the risk that may be imposed on
a particular recipient and then make the judgment whether this is an
acceptable risk. So I think the model provides objective criteria to the
clinical decision making.

Could that model be used as a level to discern whether an individual
patient should be transplanted or not? Again, I believe it could. As
transplant surgeons, we sometimes have to make the tough decision of
telling a potential recipient, or a potential recipient’s family, that “no, you
are too sick to be transplanted.” A prognostic model that can accurately
predict posttransplant outcomes, would no doubt make these decisions a lot
easier.

The question on the living donor is a very interesting and excellent
question that I think imposes additional thought. I believe that we do not
fully understand all the factors and variables that influence transplantation
outcomes after living-donor transplantation. I think the question would be
answered a lot better in a year or two from today after we have had the
opportunity to evaluate the outcome of 1,000 to 2,000 living donors in the
United States and assess all variables. But, as yet, I would not be so hasty
as to apply this model to living donors.

DR. STUART J. KNECHTLE (Madison, WI): I would like to thank Dr.
Ghobrial for the opportunity to review his manuscript and to congratulate
him on continued clinical productivity in his research.

To put the paper in a larger context, I think it could be pointed out that
allocation does not increase the total number of livers transplanted but
rather seeks to equitably distribute a scarce resource. But having said that,
you have developed a beautiful model to usefully guide us in predicting
outcomes after liver transplantation. I have three questions for you.

Firstly, have you prospectively validated the model that you have just
described for us? Secondly, the current allocation system, as you know,
favors patients with known or suspected hepatocellular malignancies. How
would this model deal with patients who have known or suspected hepa-
tocellular carcinoma? And thirdly, how would you propose to use the
model that you have just described to balance the competing goals of
transplanting the sickest patient versus achieving the highest possible
survival rate? You have given us an elegant tool. How would you apply
that tool now?

DR. RAFIK M. GHOBRIAL (Los Angeles, CA): Dr. Knechtle, thank you
very much for your questions. Some of them are easy and some of them are
very tough.

With regard to the question on hepatocellular carcinoma, these are
patients that everybody struggles with in the liver transplant survival model
because the survival is not based on liver disease. I think that the current
model may be applicable to these patients to predict short-term survival
since the model is based on pretransplant and peritransplant variables.
However, long-term survival may be dependent on other factors such as the
size and stage of the tumor. If this model would be applied for organ
allocation, we may need to take into account the factors that may influence
patient survival after transplantation for HCC. So I believe in doing
prospective evaluation, we should be looking into how well these patients
do and factor in how big the cancer is. There are so many variables that
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may influence their survival, so it may be helpful in the future if we apply,
on an individual basis, those variables back to that disease.

With regard to the applicability of the model, I believe there are
immediate and long-term goals. I think the immediate effect of this model
is that it will help the clinician at the time of the transplant to customize,

if you will, which organ should go to which recipient. I think in the long
term, after prospective evaluation of the model, we would be in a position
to say that we should apply that model in conjunction with the MELD
scoring system to achieve a balance between equity and utility for organ
allocation.
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